Kolose abunda nombro
Ŝablono:Nombroj laŭ dividantoj En matematiko, kolose abunda nombro (iam mallongigita kiel CA) estas certa speco de natura nombro. Nombro n estas kolose abunda se kaj nur se ekzistas ε>0 tia ke por ĉiu k>1
kie σ(n) estas la dividanta funkcio (la sumo de ĉiuj pozitivaj divizoroj de n).
La unuaj kelkaj kolose abundaj nombroj estas 2, 6, 12, 60, 120, 360, 2520, 5040, ... .
Ĉiu kolose abunda nombro estas ankaŭ superabunda nombro, sed la malo ne estas vero.
Ĉiu kolose abunda nombro estas nombro de Harshad.
Rilato al la rimana hipotezo
Se la rimana hipotezo estas malvera, kolose abunda nombro estus kontraŭekzemplo. Aparte, la RH estas ekvivalento al la aserto ke jena neegalaĵo estas vera por n>5040:
kie estas la konstanto de Eŭlero-Mascheroni.
Ĉi tiu rezulto estas de Robin[1].
Lagarias[2] kaj Smith[3] diskutas ĉi tiun kaj similajn formulaĵojn de la RH.
Referencoj
Eksteraj ligiloj
- Ŝablono:OEIS
- Keith Briggs pri kolose abundaj nombroj kaj la rimana hipotezo
- MathWorld: Kolose abunda nombro
- Notoj pri la rimana hipotezo kaj abundaj nombroj
- Pli pri la Rubekola formulaĵo de la RH
- ↑ G. Robin, "Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann", Journal de Mathématiques Pures et Appliquées 63 (1984), pp. 187-213.
- ↑ J. C. Lagarias, [1] An elementary problem equivalent to the Riemann hypothesis - Rudimenta problema ekvivalenta al la rimana hipotezo, American Mathematical Monthly - Amerika Matematiko Monate 109 (2002), pp. 534-543.
- ↑ Warren D. Smith, [2] Ŝablono:Webarchiv A "good" problem equivalent to the Riemann hypothesis - "Bona" problemo ekvivalenta al la rimana hipotezo], 2005