Komponita nombro

El testwiki
Salti al navigilo Salti al serĉilo

Ŝablono:Nombroj laŭ dividantoj En matematiko, komponita nombro estas pozitiva entjero, kiu havas pozitivajn entjerajn divizorojn escepte de 1 kaj si. Laŭ difino, ĉiu entjero pli granda ol 1 estas primo aŭ komponita nombro. La nombro 1 estas konsiderata nek kiel primo nek kiel komponita. Ekzemple, la entjero 14 estas komponita nombro, ĉar ĝi estas malkomponebla en 2 × 7.

La unuaj komponitaj nombroj estas

4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, ... .

Propraĵoj

Specoj de komponitaj nombroj

Unu el manieroj klasifiki komponitajn nombrojn estas per kalkulo de kvanto de la primaj faktoroj. Komponita nombro kun du primaj faktoroj estas duonprimo. (La faktoroj ne nepre estas diversaj, do ankaŭ kvadratoj de primoj estas duonprimoj.)

Alia maniero klasifiki komponitajn nombrojn estas per kalkulo de kvanto de divizoroj. Ĉiuj komponitaj nombroj havi almenaŭ tri divizorojn. Ĉe kvadratoj de primoj tiuj divizoroj estas {1,p,p2}. Nombro n kiu havas pli multajn divizorojn ol ĉiu x < n estas maksimume dividebla nombro. (La unuaj du ĉi tiaj nombroj estas 1 kaj 2.)

Funkcio de Möbius

En iuj aplikoj, necesas diferencigi inter komponitaj nombroj kun nepara kvanto de diversaj primaj faktoroj kaj tiuj kun para kvanto de diversaj primaj faktoroj. Ĉi tion priskribas la funkcio de Möbius μ.

μ(n)=1 se nombro n ne havas ripetitajn primajn faktorojn kaj havas paran kvanton de diversaj primaj faktoroj.
μ(n)=-1 se nombro n ne havas ripetitajn primajn faktorojn kaj havas neparan kvanton de diversaj primaj faktoroj; ĉi tiu okazo inkluzivas ankaŭ primojn.
μ(n)=0 por nombro n kun unu aŭ pli da ripetitaj primaj faktoroj.

Eksteraj ligiloj