Multipliko de vektoroj

El testwiki
Revizio de 00:35, 1 jan. 2025 fare de imported>Taylor 49 ({{Prisupre|pri=pluraj multiplikaj operacioj sur vektoroj kun ebla partopreno de skalaroj|unuopa operacio "krucprodukto"|Vektora produto}})
(malsamoj) ← Antaŭa versio | Rigardi nunan version (malsamoj) | Sekva versio → (malsamoj)
Salti al navigilo Salti al serĉilo

Ŝablono:Prisupre

Vektoro estas aparta tipo de matrico. Vektoro povas esti konsiderata kiel matrico kun unu dimensio egala al 1 - kolumna vektoroversa vektoro.

Tiel estas difinitaj variantoj de multipliko de vektoroj kiel matricoj. Inter ili la plej ofte uzataj estas:

  • Produto de vektoro kaj skalaro - laŭelementa multipliko de la skalaro kaj ĉi elemento de la vektoro.
  • Ordinara produto de vektoro kaj matrico.
    • Se A estas m-per-n matrico kaj v estas kolumna vektoro n-per-1 do ekzistas la produto Av - kolumna vektoro m-per-1.
    • Se A estas m-per-n matrico kaj v estas versa vektoro 1-per-m do ekzistas la produto vA - versa vektoro 1-per-n.

Ankaŭ ekzistas specifaj produtoj de vektoroj:

  • Skalara multipliko - de skalaro kaj vektoro
    La skalara multipliko de vektoro A = (ai) kaj skalaro r donas produton rA de la sama amplekso kiel A. La elementoj de rA estas donitaj per
    (rA)i=rai.
  • Skalara produto (aŭ punkta produto) - de du vektoroj de iu ajn la sama dimensio
  • Vektora produto (aŭ kruca produto) - de du vektoroj de dimensio 3, sed ekzistas iuj ĝeneraligoj al la aliaj okazoj
  • Triopa produto - kelkaj produtoj de tri vektoroj
  • Multaj vektoraj produtoj - produtoj de pli ol tri vektoroj

Ŝablono:Unua