Dosiero:Airflow-Obstructed-Duct.png
El testwiki
Salti al navigilo
Salti al serĉilo
Grandeco de ĉi antaŭvido: 800 × 571 rastrumeroj. Aliaj distingivoj: 320 × 229 rastrumeroj | 640 × 457 rastrumeroj | 1 024 × 731 rastrumeroj | 1 270 × 907 rastrumeroj.
Fonta dosiero (1 270 × 907 rastrumeroj, dosiera grandeco: 85 KB, MIME-tipo: image/png)
Ĉi tiu dosiero estas de Vikimedia Komunejo kaj estas uzebla de aliaj projektoj. Jen la priskribo en ties dosier-priskriba paĝo.
Resumo
| PriskriboAirflow-Obstructed-Duct.png |
A simulation using the navier-stokes differential equations of the aiflow into a duct at 0.003 m/s (laminar flow). The duct has a small obstruction in the centre that is parallel with the duct walls. The observed spike is mainly due to numerical limitations. This script, which i originally wrote for scilab, but ported to matlab (porting is really really easy, mainly convert comments % -> // and change the fprintf and input statements) Matlab was used to generate the image.
%Matlab script to solve a laminar flow
%in a duct problem
%Constants
inVel = 0.003; % Inlet Velocity (m/s)
fluidVisc = 1e-5; % Fluid's Viscoisity (Pa.s)
fluidDen = 1.3; %Fluid's Density (kg/m^3)
MAX_RESID = 1e-5; %uhh. residual units, yeah...
deltaTime = 1.5; %seconds?
%Kinematic Viscosity
fluidKinVisc = fluidVisc/fluidDen;
%Problem dimensions
ductLen=5; %m
ductWidth=1; %m
%grid resolution
gridPerLen = 50; % m^(-1)
gridDelta = 1/gridPerLen;
XVec = 0:gridDelta:ductLen-gridDelta;
YVec = 0:gridDelta:ductWidth-gridDelta;
%Solution grid counts
gridXSize = ductLen*gridPerLen;
gridYSize = ductWidth*gridPerLen;
%Lay grid out with Y increasing down rows
%x decreasing down cols
%so subscripting becomes (y,x) (sorry)
velX= zeros(gridYSize,gridXSize);
velY= zeros(gridYSize,gridXSize);
newVelX= zeros(gridYSize,gridXSize);
newVelY= zeros(gridYSize,gridXSize);
%Set initial condition
for i =2:gridXSize-1
for j =2:gridYSize-1
velY(j,i)=0;
velX(j,i)=inVel;
end
end
%Set boundary condition on inlet
for i=2:gridYSize-1
velX(i,1)=inVel;
end
disp(velY(2:gridYSize-1,1));
%Arbitrarily set residual to prevent
%early loop termination
resid=1+MAX_RESID;
simTime=0;
while(deltaTime)
count=0;
while(resid > MAX_RESID && count < 1e2)
count = count +1;
for i=2:gridXSize-1
for j=2:gridYSize-1
newVelX(j,i) = velX(j,i) + deltaTime*( fluidKinVisc / (gridDelta.^2) * ...
(velX(j,i+1) + velX(j+1,i) - 4*velX(j,i) + velX(j-1,i) + ...
velX(j,i-1)) - 1/(2*gridDelta) *( velX(j,i) *(velX(j,i+1) - ...
velX(j,i-1)) + velY(j,i)*( velX(j+1,i) - velX(j,i+1))));
newVelY(j,i) = velY(j,i) + deltaTime*( fluidKinVisc / (gridDelta.^2) * ...
(velY(j,i+1) + velY(j+1,i) - 4*velY(j,i) + velY(j-1,i) + ...
velY(j,i-1)) - 1/(2*gridDelta) *( velY(j,i) *(velY(j,i+1) - ...
velY(j,i-1)) + velY(j,i)*( velY(j+1,i) - velY(j,i+1))));
end
end
%Copy the data into the front
for i=2:gridXSize - 1
for j = 2:gridYSize-1
velX(j,i) = newVelX(j,i);
velY(j,i) = newVelY(j,i);
end
end
%Set free boundary condition on inlet (dv_x/dx) = dv_y/dx = 0
for i=1:gridYSize
velX(i,gridXSize)=velX(i,gridXSize-1);
velY(i,gridXSize)=velY(i,gridXSize-1);
end
%y velocity generating vent
for i=floor(2/6*gridXSize):floor(4/6*gridXSize)
velX(floor(gridYSize/2),i) = 0;
velY(floor(gridYSize/2),i-1) = 0;
end
%calculate residual for
%conservation of mass
resid=0;
for i=2:gridXSize-1
for j=2:gridYSize-1
%mass continuity equation using central difference
%approx to differential
resid = resid + (velX(j,i+ 1)+velY(j+1,i) - ...
(velX(j,i-1) + velX(j-1,i)))^2;
end
end
resid = resid/(4*(gridDelta.^2))*1/(gridXSize*gridYSize);
fprintf('Time %5.3f \t log10Resid : %5.3f\n',simTime,log10(resid));
simTime = simTime + deltaTime;
end
mesh(XVec,YVec,velX)
deltaTime = input('\nnew delta time:');
end
%Plot the results
mesh(XVec,YVec,velX)
|
| Dato | la 24-a de februaro 2007 (origina alŝuta dato) |
| Fonto | Transigita de en.wikipedia al Commons. |
| Aŭtoro | User A1 de angla Vikipedio |
Permesiloj:
| Public domainPublic domainfalsefalse |
| Ĉi tiu verko estis liberigita kiel publika havaĵo de ties aŭtoro, User A1 de angla Vikipedio. Tio aplikatas tutmonde. En iuj landoj tio povas esti laŭleĝe neebla; en tiu okazo: User A1 donas al iu ajn la rajton uzi ĉi tiun verkon por iu ajn uzo, sen kondiĉoj, krom se tiuj kondiĉoj deviĝas per leĝo.Public domainPublic domainfalsefalse |
Originala alŝutada protokolo
The original description page was here. All following user names refer to en.wikipedia.
- 2007-02-24 05:45 User A1 1270×907×8 (86796 bytes) A simulation using the navier-stokes differential equations of the aiflow into a duct at 0.003 m/s (laminar flow). The duct has a small obstruction in the centre that is paralell with the duct walls. The observed spike is mainly due to numerical limitatio
Titoloj
Donu unulinian priskribon de la enhavo de ĉi tiu dosiero
Eroj prezentitaj en ĉi tiu dosiero
montras
24 feb. 2007
image/png
44c13ef5152db60934799deeb8c6556bfa2816e6
86 796 bajto
907 rastrumero
1 270 rastrumero
Dosiera historio
Klaku daton/tempon por vidi la dosieron kia ĝi aspektis tiam.
| Dato/tempo | Bildeto | Dimensioj | Uzanto | Komento | |
|---|---|---|---|---|---|
| nuna | 16:52, 1 maj. 2007 | 1 270 × 907 (85 KB) | wikimediacommons>Smeira | {{Information |Description=A simulation using the navier-stokes differential equations of the aiflow into a duct at 0.003 m/s (laminar flow). The duct has a small obstruction in the centre that is paralell with the duct walls. The observed spike is mainly |
Dosiera uzado
La jena paĝo ligas al ĉi tiu dosiero: