3-sternaĵo

El testwiki
Revizio de 11:01, 13 feb. 2021 fare de imported>LiMrBot (formatigo de titoloj, +Projektoj)
(malsamoj) ← Antaŭa versio | Rigardi nunan version (malsamoj) | Sekva versio → (malsamoj)
Salti al navigilo Salti al serĉilo

En matematiko, 3-sternaĵo estas 3-dimensia sternaĵo. La kategorioj de topologieco, peca lineareco kaj glateco estas ĉiuj ekvivalentaj en tri dimensioj, tiel malgranda distingo estas kutime farata inter topologiaj 3-sternaĵoj kaj glataj 3-sternaĵoj.

3-sternaĵa teorio estas konsiderata kiel parto de malalte dimensia topologiogeometria topologio.

Fenomenoj en tri dimensioj povas esti sufiĉe malsamaj de tiuj por aliaj dimensioj, kaj tiel estas specialigitaj manieroj, kiuj ne ĝeneraliĝas al dimensioj pli grandaj ol tri. Eble surprize, ĉi-tiu speciala rolo gvidis al malkovro de proksimaj ligoj al sternaĵoj de la aliaj terenoj – noda teorio, geometria grupa teorio, hiperbola geometrio, nombroteorio, topologia kvantuma kampa teorio, kalibra teorio, diferencialaj ekvacioj en partaj derivaĵoj.

La ĉefa ideo estas studi 3-sternaĵojn per konsiderado de specialaj surfacoj enigitaj en ilin. Oni povas elekti la surfacon taŭge en la 3-sternaĵo, tiel ke ĝi estas nekunpremebla surfaco.

La fundamentaj grupoj de 3-sternaĵoj informdone montras la geometrian kaj topologian informon pri la 3-sternaĵo.

Gravaj ekzemploj de 3-sternaĵoj

Hiperbolaj ligaj komplementoj

Jenaj ekzemploj estas aparte konataj kaj studitaj.

Gravaj klasoj de 3-sternaĵoj

La klasoj estas ne nepre reciproke malinkluzivaj.

Iuj gravaj strukturoj sur 3-sternaĵoj

Fundamentaj rezultoj

Iuj rezultoj estas nomataj konjektoj sekve de sia historio.

Pure topologiaj rezultoj:

Teoremoj kie geometrio ludas gravan rolon en la pruvo:

Rezultoj eksplicite ligantaj geometrion kaj topologion:

Gravaj konjektoj

Iuj el la konjektoj estas opiniataj kiel solvitaj.

Vidu ankaŭ

Eksteraj ligiloj

Ŝablono:Projektoj

  • [1] Hatcher, Notes on basic 3-manifold topologyNotoj pri baza 3-sternaĵa topologio